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1. INTRODUCTION AND NOTATION

Let (€2, o/, P) be a probability space. Let R* be endowed with the
euclidean norm | | and denote by %,(Q, <, P, R*) the system of all random
vectors X: 2 —» R* with E(|X]?) < c0.

Let X, e %(2, o/, P,R*), ne N, be a sequence of iid. random vectors
with positive definite covariance matrix V. Put S,=V-"'"2%¥"_ (X,—
E(X,)) and denote by @, , the standard normal distribution or its
distribution function in R*. Let 7,: Q2 >N, neN, and 1: Q2 — (0, ) be
&7 -measurable.

The classical random central limit theorem states that

S,
P{F,g@}f%,,(t)‘wm

n

H,(7) :=sup

te RF

if 7,/n — t in probability, or equivalently, if

(1) P{

if1{>s}=o(1) forall &>0.
nt

This was proven first for a constant and for a discrete limit function 7 by

Renyi [21]. For an arbitrary limit function 7 it was proven by Blum,

Hanson and Rosenblatt [4]. The important role of the random central
86
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limit theorem for various fields of applications such as sequential analysis,
Monte Carlo methods, and the theory of Random walks and Markov
chains is nowadays well known.

Hence it seems desirable and worthwhile to find convergence rates for
H (1). Several papers have been devoted to this (see [13, 14] and the
literature cited there). Hitherto, rates of convergence for H,(t) were known
only for constant limit functions 7, or a little bit more general, for limit
functions t which are independent of the whole process.

For a constant t (and X,€ %) it was proven, e.g., in [13, 14], that the
sharpened “type (1)’-version

nt

) P{EL-4>%}=0@W)

implies H,(t) = O(e}?), where 1/n<e¢, | 0 (a result which was applied, e.g.,
in [10, 12] and extended to other processes in [1, 2, 11,23]). An example
given in [14] shows that this result fails for a non-constant limit function
7: the convergence order of H,(z) can be made arbitrarily slow, even with a
two valued limit function 7: 2 - {1, 2} and with 1, =nt (whence (2) holds
for each sequence ¢,). It is the purpose of this paper to close this wide gap
between constant and non-constant limit functions 7. Furthermore, we
consider instead of H,(t) the larger

H,(1):= sup

Ce®¥

S,
P{ﬂﬂeC}—¢QAC¢

n

where ¥ is the system of all convex Borel-measurable sets of R*. Some of
our auxiliary lemmas in Section 4 (Lemmas 4.1-4.4) are needed only to
handle the class of convex sets and can be omitted if one is only interested
in distribution functions (i.e., in H,(t) instead of H,()).

To deal with non-constant z, the problem is to find a reasonable con-
dition for 7, which guarantees—together with (2)—a good convergence
order for H,(t).

It turns out that the “one-sided” Hausdorfl-metric between o-fields o(7)
and o(X, .., X,,) allows one to formulate such a condition (where a(Y) is
the o-field generated by Y).

If o, B,< o are o-fields, define

d(Aa '@0) = ll'lf P(A AB), p('%a go) = Sup d(A, 930)-
Be #y Ae s
Observe that p(.s, %,) + p(%y, #) is the Hausdorff-metric between .,
%,, if the sub-g-fields are completed; otherwise we have only a pseudo-
metric in general.



88 LANDERS AND ROGGE

The distances d(A4, o(X, -, X,,)) have been used in {15-17] to obtain
convergence orders and asymptotic expansions for the conditional central
limit theorem of Renyi. The Hausdorff distance between o-fields or o-lat-
tices was studied by Boylan [5], Neveu [20], Rogge [22], Brunk [6], and
Mukerjee [19] and used to obtain uniform convergence rates in martingale
theorems.

In this paper we use the Hausdorff distances to get the following: Let
O<a<i PfeR, and inf 1(2) > 0. Then condition (2) and

(3) plo(t), 6(X |, ... X,))=O0(n"*(Ig n))
imply that
(4) H(1)=0(e?) + O(n~*(Ig n)**?#)

(see Theorem 2.1). An essential tool for the proof of this result is an
inequality for the Hausdorff-metric of o-fields, proven in [18].

Let us remark that condition (3) is for instance fulfilled for each stopping
time t with E(/t)<oo, since in this case p(o(t), (X, .., X,))<
supp P{(1€ B) A (1€ Bn {1,..,n})} < P(t>n} < (1//n) E(J7).

Examples show that all convergence rates in (4) are optimal in the
following sense:

If 7,=nt—whence (2) is fulfilled for each sequence &,— you cannot
obtain a better approximation order than O(n *(Ign)**#) for H,(t)
under assumption (3). If 7 is a constant limit function—whence p(a(1),
a(X,, .., X,))=0—you cannot obtain a better approximation order than
O(el?) for H,(t) under assumption (2).

Our Example 2.6 explains the occurrence of the special sequence
n=*(Ig n)? in Theorem 2.1.

Applications of Theorem 2.1 yield:

(a) If 7, are stopping times, t(€2) is finite, 0 <a <, and

&_1’>nh}=oun g n) =),

g
nt

then
S.
sup P{—l,"ieC}—<D0_,(C)}=0(n").
Ce¥ Tnl
(b) If 1: 2> N is a stopping time with E(1°) < oo for some & >4,
then
sup |P {3 _ccl_a, (O) =017
Ce¥ (nt)'? o1 '
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Part(a) follows from Corollary 2.12, applied to f= —a. Part (b) follows
from Theorem 2.1 applied to t,=wn1, ¢, = 1/n, a =1, and f= —2: Obviously
(2.2) holds; (2.3) holds as

p(a(r), a(Xy, s X,)) S P{r>n} < (1/n° E(2°)) = O(n~(Ig n) 72).

Results on convergence rates in the random central limit theorem for the
special case that the random indices 7, are independent from the process
X,, neN, can be found in [7-9, 13, 25]; in the first two papers X, is even
a martingale difference sequence.

2. THE RESULTS

The following theorem is the main result of this paper. The proof is given
in Section 3.

2.1. THEOREM. Let X,€ A(Q, o, P,R¥), neN, be iid. with positive
definite covariance matrix V. Let 1,: Q- N, neN, and 1: Q2 - [c, «0) be
o -measurable with ¢>0. Let 0<¢,—0, 0<a<i, feR, and assume that

(2.2) P{ L >sn}=0(s,‘/2),
nt
(23) p(a(z), 6(Xy, .. X,))=O(n"*(1g n)’).
Then
S

(2.4) sup | P {—1"176 C} - D, ,(C)’ = 0(e?)+ 0(6,),

Ce¥ (ﬂT)
(25) sup | P {%eC}—¢o, ,(C>] = 0(:1) + 0(6,),

Ce¥ T"

where

n—l/Z.
n~lglgn;
n~V(lgn)f T a=4 > -3
n=*(lgn)f+e O<a<i, BeR.

5n=5n(a’ ﬂ)=

The reader might wonder why we use in (2.3) the special sequences
n~*(lgn)? and why we do not try to construct a general function ¢ (e.g,
¢(x)=x?) such that condition (2.2) of Theorem 2.1 and

p(a(z), 0(X,, .., X,)) = Oa,)
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imply

N
P{ 2 C} — &, ,(C)‘ =0(&;?) + O(o(a,)).

sup -
Tl

Ce¥

Unfortunately a result of this type does not hold as the following example
shows. Observe that in this example t(Q)={1,2} and t,=nt=[nt],
whence condition (2.2) is fulfilled for each sequence ¢, and therefore
especially for ¢,=1/n.

2.6. ExaMPLE. Let X, e %(Q2, o, P, R), neN, be iid. with E(X,)=0,
E(X?)=1 such that P, is non-atomic. Let ¢:[0,1]—> R be strictly
increasing and continuous with ¢(0)=0. Then there exists a sequence a,, | 0
and a measurable function 7: Q — {1, 2} such that

(2.7) pla(z), o(X |, .., X,)}=0la,)
and
(2.8) | P{S,. <0} —P(0)| = c(1/n"? + ¢(a,))

infinitely often for each ¢>0.

Proof. See Section 3.

Let us point out now that the convergence orders in Theorem 2.1 are
optimal. Example 3 of [13] shows that if 7 is a constant limit function
(whence p(a(t), 6(X,, ..., X,,))=0), condition (2.2) does not guarantee a
better convergence order in (2.4) and (2.5) than O(¢!?). The following
example shows that condition (2.3) does not guarantee a better con-
vergence order in (2.4) and (2.5) than J,(a, B), even if t(Q2)={1,2} and
1, =nt (whence condition (2.2) is fulfilled for each sequence &,).

2.9. ExaMPLE. Let X, e %(Q, o, P, R), ne N, be iid. with E(X,)=0,
E(X3)y=1 such that Py, is non-atomic. Then there exists a measurable
function 7: Q - {1, 2} such that

(2.10) pla(t), 6(X, .., X,)) = O(n~*(Ig n)?)
and
cn~?1glg n; a=4 = -3
211)  |P{S,, <O} —®(0) > | cn (Ign)f**?  a=1 B> -1
cn(lgn)?++; O<a<li, BeR

for infinitely many ne N (where c=c(a, §, Py,) > 0).

Proof. See Section 3.
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The following result is an application of Theorem 2.1 to the case where
the random summation indices 1, are stopping times and the limit function
7 assumes only finitely many values. In this case, condition (2.3) of
Theorem 2.1 can be deduced from a suitable form of condition (2.2).

2.12. COROLLARY. Let X, € %(2, o, P, R¥), ne N, be iid. with positive
definite covariance matrix V. Let 1,: 2 — N, ne N, be stopping times and t:
Q- (0, o) be of-measurable such that ©(Q2) is finite. Let 0<a <1, feR
and let 8,=90,(a, B) be defined as in Theorem 2.1. Assume that

(%) P{ %—1'>6£}=0(n‘“(lgn)ﬂ).
Then
S.,
(a) iug P{(HT)I/ZEC}—‘DO' I(C)’ =0(4,),
S.,
(b) suz P{MEC}—diO‘,(C)‘:O(é,,).
Ce n

Proof. Since n~*(Ign)?=0(J,), assumption (2.2) of Theorem 2.1 is
fulfilled with ¢,=02 according to (). Hence the assertion follows from
Theorem 2.1 if we show that

(1) plo(r), 6(Xy, .., X,)) = O(n~*(Ig n)?).

Since ©(£2) is finite, (1) is shown if we prove for each be t(£2) that
(2) d({t=b}, 6(Xy, .., X,)) = O(n~*(Ig n)F).

Put

A(n, b)={

T

—— 1 < 2 ’ s .
Py ! 5,,} neN, bet(2)
Since 7(£2) is finite there exists n,e N such that

(3) A(n, b), bet(Q), are disjoint for all n>n,.

Let be1(£2) be fixed and put k(n) :=max{je N: j<bn(1 + §2)}. Since 1,,
ne N, are stopping times, we have

4) A(n,b)ea(X,, ... Xiwmy)

640/53.1-7
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By (3) we obtain for all n > n, that

(5) {r=b}AA(n,b)c{

In_ 1‘ >6§}.

nt

Hence (4), (5), and (*) imply

(6) d({t=b},0(Xy, .., X)) = O(n"*(1g n)?).

Since k(n) < 2bn for sufficiently large ne N, (6} implies (2).

Remarks. (a) It is possible to prove modified versions of Theorem 2.1
and Corollary 2.12 under a weaker moment condition (X, € %, ., for some
0<e<1), using

sup P{%e C}—dio‘,(C)l <en 2

Ce¥

(see formula (18.25) of [3]) instead of <cn= "2
(b) If we replace condition (2.3) of Theorem 2.1 by

P(G(T)a O-(Xl’ ey Xrn Y)) = O(niz(lg n)ﬂ)’

where Y is independent of X,, ne N, we obtain a slight generalization of
Theorem 2.1. The proof does not change. This generalization essentially
contains a result of [14], where 7 is independent of X,, ne N; choose
Y=1

3. PROOF OF THE RESULTS

In this section we prove the results of Section 2, postponing the proofs of
some auxiliary lemmata to Section 4.
Put [x]=min{neN:x<n} for xeR.

Proof of Theorem 2.1. Let wlg E(X,)=0, V=1I As é,>n""? we may
w.lg. assume that ¢, > 1/(cn). Hence (2.2) implies

T, o
P {‘ Tne] 1 l > 28,,} = 0(e}?).

Considering £, = 2¢, instead of ¢, we may therefore replace condition (2.2)
by

[i] P{

1
[;;]_ l‘>5,,}=0(£,1,/2) with s,,?a.
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We will show that

() sup P{[S[a?,zeC} ¢o,,(C)]=0(5n),
e e
S)0)
—P{Vve[n(w):ﬁr(—wa))—]meC}>

=0(e?)+ 0(5,)

where I,(w)= {veN: [nt(w)](1 —¢,) <v< [nt(0)1(1 +&,)}.
Let us at first prove that (I) and (II) imply the assertion. Put

_f Siw)
A,(C)= {WE Cforallve I,,(w)},

B, (C)= {[ S((w])”zeCforsome vel (w)}

Since P{w:1,(w)¢,(w)}=0(Y?) by [i] and since [nt(w)]el (w), we
have

P(An(C))—O(e:/Z)sP{[ S]meC}

P {[i?]t‘]ﬂ € C} < P(B,(C))+ O(e"?).

Hence (1) and (II) imply

S
(1) gug P{[Tti"—lﬁec}—dso.,(C)l=0(6,'.’2)+0(5,,)-
We have
[ ]l/2 ) [n ]1/2 1
?) { (Zz)‘““l‘”"ﬂ}c{ (n:>“2_1|>(cn>‘/2}
c{ ["’]—1‘>l}=g
nt cn

We obtain (2.4) by (1), (2), and Lemma 4.4 applied to Y,=S_ /[nt]"?
¢, =[nt]1"*/(nt)"?, and a,=e¢l?+4,. Furthermore, we have for all ne N
with ¢, <} that

2 1/2 [ ] n
e s [l
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Hence [i] implies with a, = (2¢,)"? + 6, that

[nt]'?

172
rn

(3) P{ —1\>a,,}=0(8}/2)=0(a,,).

Now (1), (3), and Lemma 4.4 yield (2.5).
Thus it remains to prove (I) and (II).

In the following ¢, are constants only depending on the distribution of
X, «, B, and the lower bound c of t.

Proof of (I). Let N;={2":ieN}, N,={veN,:v<[n/lgn]}, and
j(n)=max N,;n>=3. For each Be &/ put

(4) B(v):={P(B|«,)>1L}, veN,
where &/, :=g(X,, ..., X,). Put furthermore
(5) = {151 > p¥3(2Kkv Ig )2},

where p, = E(|X,|?) and k is the dimension of R*. We prove later that for
all Beo/, meN, m=2,

(6) sup

Ce¥

P{—S—i"/'—zEC,B}—¢O‘,(C)P(B)‘
m
<dB, i)+t (PB4 X1 aP)

) ((vlgv )2 d(B, sbyp)

ve Ny

+ j 1S, dP)-
A, (B(v) 4B(v/2))

We show at first that (6) implies (I). Let ne N be fixed with n>2 and
nc = 2. Put

B, ={[nt]=m}ea(r), meN.
Since t> ¢ >0 we have for all Ce € that

S
0l

Y P{ —€C, [nt] = m} o',(C)P{[nt]=m}’

mz=nc

<%

mznc

Sy,
P {;n—lﬁe C, B,,,} — &, (C) P(B,)|.
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By (7) and (6)—applied to B= B,, for each m > nc—we have
Stm)
# el -

Rl(n)= 2 d(Bm’ ‘Sjj(m))’

mz2nc

Rim)=c, ¥ L,,Z(P(Bmumj

m Bml(1)

m = nc

iR(Cn

with

X, dP),

1
RS(n)=C2 Z m[/z (V lgv)l/z d(Bma ‘ng/Z)

mznc,ve Ny

1
Ryn)=c, Z 5

| ,
> e, ve N Ay (Bo{v) A Bm(v/2))

|S,| dP.

To prove that (6) implies (I), we have to show that

(8) sup R(n)<c;90,, Jj=1,2,34

Ce¥

As B,ea(tr), meN, are disjoint we obtain from Lemma 4.8(i) and
assumption (2.3) that

Rl(n) < Z d(Bm’ ‘dj([rxc]))

m 2 nc

<4p(a(1), vdj([nc]))
< c4(j([re]))~*(1g j([nc]))?

(2.3)
n\* n 8
<es| — g{—)) <e6,.
“(lgn) (g(lgn>) o

Since B,(1), me N, are disjoint according to (4), we have
Ry(n)<cy/n'*< ¢, 6,

Furthermore, we have

1
R3(n)=C2 Z Z W(VIgv)uz d(Bma '%/2)

peN) (g2nc<m< unc,ve Ny

<eg ) Y (vig v)'2 d(B,,, H).

1/2
peNy (’un) (#/2)ne < m < pnc, ve Niyncl
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As B,ea(r), meN, are disjoint, we obtain from Lemma 4.8(i) and
assumption (2.3) that
1 ,
R;(n)<dcq Z T2 Z (vigv)'?p(a(z), )

pe N (un) vE Nlunc)

<C9Z !

)1/2 Z 1/2 a(lg v) +1/2.

=
(2.3) pne Ny ('un v € Nunc)

As (1/p"*) X,en, v"> (g v)’ "< €19 8, by Lemma 4.7, we obtain

R3(”)<C“ Z 5[um'] S Ci2 6nv
ue Ny

where the last inequality follows by a direct computation from the
definition of é,=4,(a, ).
As B, (v), me N, are disjoint for each ve N, we have

RmM<-5 Y ¥ (j S, P+ |Sv|dP>
Ay B(v) Ay B(v/2)

veN  m2nc

SZCUW Y j.'S"' dP.

ve N, Ay

By Lemma 4.9 this implies
1
R4(n) < Ci4a=1732 1/2 < Cia 5n'

Hence (8) is proven. Thus (6) implies (I} and it remains to prove (6).
Let Be o and 2<meN be given. Then

(9) 13=1B“13(j(m))+ Z (lB(v)_lB(v/Z))+lB(l)'

ve Ny
For ve N,,u {1} put

(10) 7, :=sup |E((1 {Smim2e C) — @5, (C))1 gy — L g2y

Ce¥

where B(}) :=¢. By (9) and (10) we have

(11) Nm = SUP

Ce%

SE[Ng—1puemll+ Y 7.

veNpu {1}

S
P {We C, B} — &, AC) P(B)
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By (4) and Lemma 4.8(ii) we have
(12) E[|15— 15 1=d(B, &).

Hence (11) implies

(13) r’msd(B’ Jgj(m))"l_ Z yv'

veNpu {1}

By Lemma 4.10 we have for all ve N,,u {1} that

S, c
(14) sup (ml/zeCIM) q)o‘,(C)lsﬁ

Ce¥€

(2 +18,]).

By (10) and (14) we have

Sm
Yy =Sup f(P (We C|~dv>—‘po,l(c)> (1 gy = Lagy2)) dP‘
Ce® m
<5 [ "2 418U) )= Loz | P
Hence
(15) n<ota(PEO+[ X,/ aP)

and for ve N,

(16) 9, <% V'2P(B(v) 4B(v/2))
Cis
It S,| dpP
ml/2 J'Ayn(B(v)dB(V/ﬂ) l I

1,2 (v1gv)'” P(B(v) 4B(v/2)).

Since P(B(v) 4B(v/2))<2d(B, #,,) by (12), we obtain from (16) for each
veN,, that

(1) n<crmmm( 01w 2B, oha)+ |, 1S, dP).

v (B(v) 4B(v/2))

Now (13), (15), and (17) imply (6). Thus (I) is shown. It remains to prove
an.
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Proof of (I1). We have to show
(18) sup P(B,(C))— P(4,(C))=0(e,*) + 0(5,).

Ce¥

Let n be fixed and put B,, = {[nt]=m}ea().
Let I,(m)={veN:m(l —¢,)<v<m(l +e,)}; we have

(19) P(B,(C))— P(4,(C))

Y {P(B,(C)nB,)—P(4,(C)n B,,)}

mz2nc

Y. {P{B,,S,em'Cforsomevel,(m)}

mznc

— P{B,,, S,em'*Cforallvel,(m)}}.

Let 4, ={P(B,|H,)>4}. Then 4,€c

j(n)?

P(B,, 44,,)=d(B,,, 5,,). Hence (19) implies

meN, are disjoint and

(20) P(B,(C))—P(4(C)<2 Y, d(By, Hyin)

m 2 nc

+ Y {P{A4,, S, em*Cforsomevel,(m)}

mznc

—P{A,,, S,em'*Cforallvel,(m)}}.

As B,,, me N, are disjoint, we have by Lemma 4.8(i) and assumption (2.3)
that

(21) Z d(B,, J”j(n)) <4p(a(z), -dj(n)) <¢170,.

mznc

Using Lemma 4.2(ii) and 4,, € #,, we have for all m > nc that

(22) P{A,,, S,e m"*C for some ve I(m)}
— P{A,,, S,em"*Cforallvel,(m)}

= j PQ@v, ueL(m): S,em"2C, S, ¢ m"*C| ) dP
Am

/ 2me
< _.__l_< P(A 12
CISP(Am) m(l —8,,) —_](n) cl9 ( m) 8"

for sufficiently large n. Now (20), (21), and (22) imply (18}, i.e., (II) is
shown.
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Construction of Example 2.6. Let wlg. ¢(x)>x, otherwise consider
@(x) v x. From the central limit theorem we directly obtain that

(1) lim P{S,>0,S,,<0}=:b>0.

n—xc

Let n,,:=n""2 and y := "% There exists a subsequence i(v)eN, veN,
with

(2) Z ﬂi(\-)S‘P*l(ﬂi(m)L meN,
1
(3) z ni(v)szb‘
veN

Now we inductively construct k(m)eN, k(m)>k(m—1), and sets
By (my<= & such that

(4) k(m)=i(m+1), Bymy€0(X,:v<k(m)),
(3 Bk(m)C{Sk(m)>O}_(Bk(l)U UBk(m—l)),
(6) P(Bk(m))zni(m)’

m m b
(7) ‘P{Sk(m)SO, Z Bk(\')}—P{SZk(m)SO’ Z Bk(v)}‘?é—nl(m)'
v=1

ve=1

Let us at first show that this construction implies the assertion. Let
B=3%, . By and put

t=14+21,_5.
Define the sequence a, by
(8) a, =Y " Nigm) for k(m)<n<k(m+1), meN.
Let m be such that k(m)<n<k(m+1). Using (2) and (6) we have

(9) p(O’(T), U(Xl, iid) Xn)) = d(B9 G(Xl’ ey Xn)) < z P(Bk(v))

v>m

— -1 —
® Z 'li(v)(%'/’ (ﬂi(m))—an-
v>m

Relation (9) implies (2.7). Furthermore, we obtain for all n=k(m),
me N—using the theorem of Berry and Esseen—that
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[P{S,. <0} —&(0)]
=|P{S,<0, B} + P{S,,<0,Q2— B} — ®(0)|
=|P{S,<0, B} - P{S,,<0, B} + P{S,, <0} — &(0)]

>~P{5k<m)<0’ ) Bk(v»}—P{Szk(m»SO’ ) Bkm}
v=1

v=1

Cy
- Z P(Bk(v))_ 172
v>m n
S b ¢y
2z =Nm—4n——5
(2),(6).(7]8 itm) n nl,z

b c
zgl//(an)_an_n_l%'

Since ¥(a,) = (¢(a,))"? = a\? we consequently obtain for all n = k(m) with
sufficiently large m that

P{S,. <0} —D(0) > c3(9(a,)) > — ¢, /n'".
Since, furthermore, for all n = k(m)

— Yy 1,2
O(A,) = N iy Z Nicpmy =M = 1/1°°7,
(8) (4)

we obtain (2.8).
Thus it remains to construct k(m)eN, B, < 2 fulfilling (4)-(7).
According to (1) there exists k(1) = i(2) such that

P{Si1)>0, Sy, <0} = b/2.

Now apply Lemma4.6 with 4=0(X,:v<k(l)), A4={Sy, <0},
A¢={Se1,>0}, a=5b/2, and e=n,,,; then e<#/2 by (3) and
P(A N Ay) = a. Hence there exists By, < {S;,,>0}, Bi1,€0(X,, v Xiqr))
such that

P(By1)) =11 P{SZk(l)SO’ Bk(l)} <{(b/4) n;.
Hence (4)-(6) are fulfilled for (1), B,(;, and (7) holds as

IP{Ski) <0, Bet)} — P{S2u1) <0, Byy) }
= P{SzkmSO, Bk(l)} = (b/4) Hi1y-

Now assume that k(v), B,,,, are defined for v <m such that (4)-(7) hold.
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According to the conditional central limit theorem of Renyi there exists
k(m+1)=i(m+2) v k(m) such that

(10) ‘P{Sk(mﬂ,so, 5 Bk(v)}—P{szk(mmso, 5 Bkm}‘
v=1

v=1

b

Sgr’i(m+l)'

Since 3°7"_, P(B,,)) <b/4 by (3) and (6), k(m + 1) can be chosen according
to (1), such that additionally

(11) P<{5k1m+1>>0’Szk(m+n<0}— U Bk(v)>

v<m

m
2P{Sk(m+l)>0a Szk(m+1)<0 z Bk(») =

I\)ID‘

Now apply Lemma 4.6 with &, =0(X,:v<k(m+1)), A= {Sxym+1,<0},
Ao={Stim+1,>0}—Uv<m Brvy» ®=5/2, and e=n,,,,,,; then e<a/2
by (3) and P(AnAy)=a by (11). Hence there exists B, .)€
o(X,:v<k(m+ 1)) such that

(12) B+ 1) {Skim+1)>0} — U By
(13) P(Bk(m+1))='h(m+1),
(14) P{Sokim+ 1y <0, Byms 1)} = (b/4) Nim 1 1)

Thus (4)-(6) are fulfilled for m + 1. It remains to prove (7). We have

m+1 m+1
'P{Sk(m+l)<0, Z Bk(v)}—P{SZk(m+l)<0’ z Bk(v)}‘

v=1 V=

{Sk(,,,H)\O Z Bk(v)} {SZk(m+l)\0 Z Bk(v)}

(12)

—P{Szk(m+1)<0a Bk(m-f—l)}’

b
2 P{Ssm+1)<0, Bemy 1y} —3g Mim+ 1)

(10)

b b b
>

(ﬁ)zni(m+l)_§ 'Ii(m+1)=§'1i(m+1)-
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Thus (7) holds for m + 1. This finishes the inductive construction of k(m),
B

Construction of Example 2.9. Let a, B be fixed. There exists n, € N such
that

(1) e, :=n *(lgn)? is decreasing and <} for n=n,.

Put ¢, =1 for n <n,. Then there exist, according to Lemma 4.5, disjoint sets
B,eo(X,, .., X)), veN, such that with B=3",_n B,,

(2) d(B, (X}, ... X,))< Z P(B,) < Z (e, =&y 1) =¢,
(3) P(S,,<0, B)—P(S,<0, B)

o [n/1gn] .
ZW Z (VIgv)/(sv—sv+l)_8n

v=1
for infinitely many ne N and some ¢,>0.
Put t=154+21,_4. Then (2) implies
p(o(1), 6(X,, .., X,)) =d(B, o(X,, .., X,)) = O(n~*(1gn)"),

ie., (2.10) is fulfilled. Since ¢, —&, , | = ¢,(1/v** )(Ig v)* for sufficiently large
v, it is easy to see that for some n,>n,

1 [n/lgn]
(4) T Y (vigv)e,—e,. )28, forall nzny,

v=1
where
n~"lglgn, ® B 3
8,=0,(0 B)={ n=2(Ign)’ 32 a=4 f> -3
n=*(lg n)**#, O<a<
Now let n > n, be such that (3) holds. Then
= P(S,,<0, B)— P(5,<0, B)+ ®(0) — P(S,,<0)

> c35n_8n+¢(0)_P(SZn<0)
(3). (4)

and hence by the theorem of Berry and Esseen

ZCS 5,,—8,,—(.'4(1/”1/2)? c an’

if n is sufficiently large. Hence (2.11) holds for infinitely many ne N.
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4. AUXILIARY LEMMAS

In this section we collect all lemmas which are used for the proofs of our
results.
To deal with arbitrary convex sets instead of rectangles in Theorem 2.1,
we need the first four lemmas.
For CcR*, yeR* put d(y, C)=inf..c|y—z| and K,(y)={zeR*:
| ¥ —z| <&} for €>0. Furthermore, let
Co:={yeR*:d(y, C)<e}
and
Ce:={yeR*: K,(y)=C}.
It is well known that Ce ¥ implies C°e %, C" “€%.

LEmMA 4.1, For each Ce % we have
i) Ce=C,
(i) (C°)~*<C,
(iii) (C—z)—(C—z) = C”—(C¥) > forzeR", |z| <1,
where C is the closure of C and C—z={c—z:ceC}.

Proof. Part (i) follows from the fact that the interior of C is equal to
the interior of C.

(ii) Let wlg. C=C. We have to prove

(1) yEC=>K(y)n (R -C)# 2.
Let y ¢ C be given. Then there exists y,e C with

| ¥— yol = inf [ y—c|.
ceC

Choose f € R* with

(2) Ifl=1 and {f,y—cd=|y—yo forall ceC,

where (x, y) is the scalar product of x, yeR*. For existence see
Theorem 1.1 of [24, p. 360].
Let z=y+ (¢'/|y — yol )y — yo) with ¢ =max(0, e~ |y — y,|). Then we
obtain, using (2), that ze K,(y) n (R* — C*). Hence (1) is shown.
(ili) As C—z<C¥, we have to prove (C¥) > c(C—z)~2 As
C¥cC3c(C—2z)~% it suffices to prove (C¥)~><C~*. This
follows from (i) and (ii):

(C~2r)—5rC [(CZr)—Zr] ~3rc C_v~3r= C—3r.
(ii) (i)
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LEmMa 42, Ler X,e %(Q, o/, P,R*) be iid. with E(X,)=0 and
covariance matrix I. Then there exists a constant cy—depending on the
distribution of X, only—such that

(i) sup P{Iv,ue[p,q1:S,€C S,¢C}

Ce¥
<€ (q—p)/p; p.geN, p<g,
(ll) Sup P(ava,ue[p’ q]:SVEC9 Su¢C|X15"'a X/)

Ce®€
Seo/lg—p)p—J)j<p<gq.

Proof. (i) Since P{3v, pnelp,q]: S,eC,S5,¢C} = P{S,¢C, Ive
(p.q): S.eC} + P{S,eC, Jue(p,q):S,¢C} it suffices to prove

(I sup P{S,¢C,Ive(p,q]:S,eC}<c u,
Ce¥ p

(1) sup P{S,eC,Ive(p,q):S.¢Cr<c 1L
Ce€

Proof of (I). Let Ce% and p<gq be given. Put ¥, =X, ,, veN.
A, ,=P{S,¢C 3ve(p,q]:S,eC}

pP.q

=P{S,,¢C, S,eC— Y Y,forsome vsq—p}.

i=1

As S, is independent from Y,, .., Y, , we obtain that

q-p

(n Ap‘q=JP{S,,¢C, S,,EC—Z y, for some qu—p} P dy),

where Y=(Y,,.. Y, ,)and y=(y,,.., y, ) As (D—z) "< D for all
zeR¥, DcR* we have (D—z)—Dc(D—:z)—(D—z)"%!, and hence

with D= (1//p)C and z,= (1//p)(yi + - + 1)

(2) {S#C’SPGC—Z y,forsomevgq_p}

j=1

U {Jenper- 8 )

c qop {ie (D—2z,)— (D—z‘,)_z':”'}.
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By Lemma 4.1 we have

qop (D _zv) _ (D _zv)—lev[ - DZa(y) _ (D2a(_v)) ~5alyl,
v=1

where a(y)=max{|z,: 1<v<g—p}=max{|(1//D)y + --- +»I:
1<v<qg— p}. Hence by (1) and (2)

A,,,,sfP{%

c D2a(_v) _ (DZa( _v))—Sa(y)} Py(dy)
p

As D> eg, (D*(¥) 3 e g we obtain from Corollary 17.2 of [3] that

A <1 C‘ J‘¢O (DZa(l) (DZa(_rj)—Sa(_v))Py(dy)'

Pll\\/;

AS SUpec¢ Po (C—C %)< c,e by Corollary 3.2 of [3], we obtain

4
A<t [ 5a(y) Pay)

— Y +.--+7Y —
<i+5c2q”E< Y+ +v|><qu7

7

where the last relation follows from a well-known inequality. Equation (II)
runs similarly as (I) but is somewhat easier.

max _—
SR INCEY: P

3

(ii)) Put Y,=X,,, ieN, S,=m,Y. As (Xy,.,X;) and
(Y,,.., Y, ;) are independent we obtain that

(3) P{Elv pelp,q):S,_jeC— Z x;,S,_,¢C— Z x,}
i=1 =
EPGVJ‘E[P,‘I]3SvECaSp¢C|X|,---a )
As
J J
P{Bv,pe[p,q]:sv_jeC—Zx -Y x }
i=1 i=1
J
-P{HV#E[p —jq—jl:S,eC— Zx,, L EC— Z }

we obtain (ii) from (3) and (i).
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LemMMA 43. Let O<a<iand Ce¥. Put

1 1 ~ t 1
g(a)=ﬂ {rlcnel:m’l—‘—‘—a:l}’ C(a):: U [1+ay’—lTa}‘]

yecC

Then C(a), C(a)e¥, Cla)c C< C(a) and
(%) sup @, (C(a)—C(a))<c(k)-a

Ce¥
with a suitable constant c(k), depending only on the dimension k.

Proof. As Ce% we obviously have C(a)e ¥ and
C

1—a

C
(1) §(a)=mn

A little reflection shows also that C(a)e%. We show at first that

(2) sup @, (C—AC) < cy(k)(1—2), 0<i<l.

Ce¥

Let De®¥ with Oe D. Then 4D < D and we obtain according to Lemma 4
of [17] applied of f=1,, and a= 1 that

(3) @0, AD — D)= [ (1,p(4x) = 1;p(x)) B, ()
<y (k)(1=2)

Now let ¢ #Ce% and put D= {nC:0<n<1}. It is easy to see that
0eDe¥ and C— AC < D —AD. Hence (3) implies (2).
To prove (#) it suffices to show that

(4) sup @, (C— Cla)) <calk) a,
Ce¥

(5) sup @, (Cla)— C) < cy(k)a.
Ce¥

Proof of (4). We have by (1) and Lemma 4 of [17]—applied to f =1,
and 1 — a instead of a—that

(6)Po, (C)— Dy, [(Cl(a)) =_f (Te(x) = Yo+ v —a)(x)) Dy, [(dx)
= [ (1ex) = 1cl(1 — @) %)) B, Ad)

+I (Pen—a)X)~1cja —aym i + (X)) Po, (dX)

C C
Scl(k)a+¢0"(m_l+a).
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Put D= C/(1—a). Then C/(1+a)=((1 —a)/(1+a))D and hence by (2)

C C l—a
—_—— = — D
0 (po"(l—a 1+a> ¢0"<D l+a )

l—a
Scl(k) <1 —m)<2cl(k)a

Now (6) and (7) imply (4).
Proof of (5). Put C;=U,cc [y, 4], A>1. We show that

(8) sup Do, [(C; — C)<cylk)(A—-1).

Ce¥

Let De® with 0e D. Then D, =AD and we obtain as in formula (3) that

(9) Do, (D, — D)< cy(k)(A—1).

If ¢#Ce%, we have D= {nC:0<n<1} that 0eDe¥ and
C,—CcD,—D. Hence (9) implies (8). To prove (5) put D= C/(1 +a).
Then C(a)=D; , 41 - and we obtain from (8) and Lemma 4 of [17]
that

Py, (Cla)—C)
= ‘po, I(D(l+a)/(l —a)“D)'l‘ ‘po, I(D)_(DO. I(C)

l+a
< ey(k) (1 “a 1) +J<1C/(l+a)(.v)_ Lejt+a <T%)> Do, (dx)

K4c,k)a+c (k) (1 —1—_}_0) < c5(k)a.

This proves (5).

LEMMA 44. Let 0<a,—0. Let Y,: Q- R* and ¢,: 2 - R be random
variables. Assume that

(i) sup |P{Y,eC}—®, (C)|=0(a,),

Ce¥
(ll) P{|1_£n|>an}=0(an)'
Then

sup |P{¢{,Y,eC}—®o [(C) =0(a,).

Ce¥

64G:53 1-8
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Proof. Let Ce®% and ne N with a, <4 be given. With C(a,), C(a,) of
Lemma 4.3 we have
{Y,eCla)}n{lt-¢l<a,} = {iY,eClnf{ll-¢l<a,}
c{Y,eC(a,)}.
Hence we obtain from (ii) that
(1) P{Y,eC(a,)}~0(a,)<P{,Y,eC}<P{Y,eCla,)}+O(a,).

By Lemma 4.3 we have

(2) sup Do, (Cla,)) —Po (C)<clk) a,,
Ce¥

(3) sup @ [(C)— P, (Cla,)) <clk) a,.

Ce¥¢
As C(a,), C(a,) e € by Lemma 4.3, (1), (2), (3), and (i) imply the assertion.
LEMMA 4.5. Let X, € %, neN, be iid. with E(X,)=0, E(X?)=1 such

that Py, is non-atomic. Let ¢,} with ¢,=O(n"7) for some y>0. Then there
exist disjoint B,eo(X |, ..., X,), ve N, such that with B=3,_« B,,

(1) P(B\')SS\'—8V+1’
(2) P(S,,<0, B)—P(S,<0, B)
¢ (nlgn) 1/2
>=7 ; (vig)" e, —&,,1) — &,

v

1
for infinitely many ne N and some ¢ > 0.

Proof. The proof follows the lines of the proof of Lemma 5 of [15].
You have to replace &(0)- P(B,) by P(S,,<0, B,) and you have to use
instead of Lemma 4 of [15] the following modified version:

For all 0 <y, <y, there exist cy=co(yy,7,)>0 and ny=ny(y,, y2.)eN
such that

N 12
Vg ‘) P(B,),
n

P(S,,<0, B,) - P(S,<0, B,) >c0<

ifo(X(, .., X,)3B,< {y,(vIgv)'*<S,<y,(vigv)'?},v=n, and vigv<n
(which is proven in a similar way as Lemma 4 of [15]).

LEMMA 4.6. Let P|.of be a p-measure and sdy= oA a o-field such that
P| o, is non-atomic. Let Ae o, Aje H, be such that P(An Ag)=a>0.
Then for each € < af2 there exists a set A, € sy, A, < A, such that

P(A,)=¢ and P(ANnA,)=(/2)e.
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Proof. Let e<a/2 be fixed. Put m:=max{neN:ne<P(4,)}. Then
m2=2 and P(A,)=me+ r with r <e¢. Since P| .2 is non-atomic and A, e o
there exist—according to a theorem of Ljapunov—disjoint sets
A, .., A, e with A,c A, and P(A;)=¢, i=1, .., m. Hence

f P(Ar\A,-)=P(Am f A,);P(AmAO)—P<A0— f A,)
i=1

i=1 =1

=P(ANnAy)—(P(Ay)—me))Zza—rza—e=a/2

Consequently there exists i€ {1, ..., m} such that P(4n A4,) = (1/m)(2/2).
Put 4,:=A,. Then A,c Ay, A, € o4, P(A,)=¢, and—as m<(1/e) P(4,)

&

P(A mAE);P(AO)

o4 > o4 ¢
2727
Thus A, has the desired properties.

We collect the next four lemmas for the sake of completeness.

LEMMA 4.7. Let N,={2":veN} and N,={veN,:v<[nflgn]}. Then

O(n°(lg n)* %), e>0,yeR

, O((lgn)+1); e=0,y> —1

El ')=
Evnv(g”) 0(g Ig n); £=0, 7= —1
o(1); e=0,y< -1

Proof. By direct computation.
LEMMA 4.8. Let B,% < o/ be o-fields.
(i) If B,e B, neN, are disjoint then

Y d(B,, €)<4p(B,6).

nelN
(i) If Ao then with B={P(4|B)>}}

P(A A B)=d(4, B).

Proof. Part (i) follows from Theorem 1 of [18]. Part (ii) follows by a
direct computation (the idea of using this special set B is due to [20]).

LEMMA 49. Let X, € (R, o, P,R¥), ne N, be iid. with E(X,)=0 and
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covariance matrix I. Let A, := {|S,| > p}*(2kv1g v)'?}, where py = E(}X|?).
Then

Y | 18l dP<ck)ps,

vel "4

where N, = {2":ve N}

Proof. Follows in the same way as formula (32) in the proof of the
d,-inequality of [17] (choose m(i)=2").

Lemma 4.10. Let X, e 4(Q, o, P,R*), neN, be iid. with E(X;)=0
and covariance matrix I. Then there exists a constant c(k) such that for all v,
meN with v<m/2,

S ,
sup P(Wecm,m, X‘,)—fbo.,(cr).sc(k)ﬁi(vmﬂsvn.

Ce%

Proof. Follows directly from Lemma 2 and Remark 3 (ii) of [17].
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